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Abstract 

The figures of merit (FOMs) proposed in a recent 
paper [Cascarano, Giacovazzo & Viterbo (1987). Acta 
Cryst. A43, 22-29] are modified to improve their 
efficiency. It is shown that FOMs based on psi-zero 
triplets and FOMs based on the distribution of the 
concentration parameter a can be treated by the same 
mathematical formalism. An earlier FOM, the R Kar~e 
criterion, is revised and suggestions are given for its 
efficient use. The use of the correlation coefficient is 
also suggested, provided large- and small-intensity 
reflections are used simultaneously. 

1. Introduction 

Multisolution methods via magic-integer sequences 
(White & Woolfson, 1975; Declercq, Germain & 
Woolfson, 1975; Main, 1977) or via random starting 
sets (Baggio, Woolfson, Declercq & Germain, 1978; 
Yao, 1981) are very efficient procedures for crystal 
structure determination. A relatively large number of 
phase sets are created among which the correct 
solutions are recognized by special figures of merit 
(FOMs). FOMs rely on a probabilistic background 
and/or on algebraic properties and are expected to 
be maxima or minima for the correct solutions. 

Some FOMs are based on the agreement between 
the estimated and the assigned values of structure 
invariants and seminvariants. Accordingly, the gen- 
eral formula 

SSFOM(i) =Y~ wjGj cos ( ~ j -  Oj)/Y~ wjD,( Gj) 
J / j  

= T~/Bi for i = 1, 2, 3, 4 

may be used (Cascarano, Giacovazzo & Viterbo, 
1987), where qb and 0 are the expected and the 
assigned values of the structure invariant or 
seminvariant, G is the reliability parameter of the 
phase relationship and Dl(x)=Ii(x)/Io(x),  where 
Io, 11 are the modified Bessel functions of order 0 
and 1, respectively. The denominator of SSFOM is 
the expected value of the numerator. For i=  1, 2, 
SSFOM denotes one-phase (Overbeek & Schenk, 
1976) and two-phase (Burla, Giacovazzo & Polidori, 
1989) structure seminvariants, respectively. For i = 3, 
SSFOM is calculated for triplets estimated to be nega- 
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tive via their second representation (Cascarano, 
Giacovazzo, Camalli, Spagna, Burla, Nunzi & 
Polidori, 1984). For i---4, SSFOM involves negative- 
quartet invariants (Schenk, 1974; De Titta, Edmonds, 
Langs & Hauptman, 1975; Giacovazzo, 1976). 

The information contained in the various SSFOMs 
can be combined into (Cascarano, Giacovazzo & 
Viterbo, 1987) 

CPHASE = (T~ + T2+ T3+ T4)/(B, + B2+ B3+ B,). 
(1) 

CPHASE automatically weights the importance of 
the individual FOMs. In particular, it will be domi- 
nated by the FOM(s) that involve(s) a large number 
of reliable phase relationships. For example, in struc- 
tures for which one-phase structure seminvariants are 
estimated to be present in small numbers and with 
low reliability, the contribution of 7"1 and B1 to 
CPHASE will be negligible. 

FOMs of a different nature (Cochran & Douglas, 
1957; Karle & Karle, 1966; Declercq, Germain & 
Woolfson, 1979) are the traditional 

ABSFOM= [~  a h - ~  (Ogh)rand 1 

]1 
X ((C~h)) -- E (Cth)rand , (2) 

h 

(,) 

RALPHA = E. h (4) 

PSI(O) = ~  o ~ / ~  v~/2, (5) 

where 

cos )2 0j)21,/2, 

Gj = 21ghgkf ih-kj l /  N '/2, 
0j = 0kj + 0h-kj, 

(an) is the expected value of the Oth, (ah)rand is the 
expected value of c~, for which the phases 0kj and 
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0h-k~ are assumed to be randomly distributed. In (5), 

a ~ :  ~ A j c o s 0 j  + ~ Ajs in0j  
j = l  j = l  

where h is a reciprocal-lattice vector with l e d -  0, 

t~h-" ~ A; 2 , 
j----I 

kj and h -  kj are indices of strong I E] values for which 
phases have been determined. 

A new point of view for the above FOMs was 
introduced by Cascarano, Giacovazzo & Viterbo 
(1987), who made use of the probability distribution 
function 

P(c~h) = N(t~h; (ah), O'2~) 

----[(2~r)~/2trh] -* exp[--(ah--(ah))2/2tr~],  (6) 

where 

j = l  

o'2=½ ~ G211+ D2(Gj)-202(G.i)], 
j = l  

Di(x) = Ii(x)/ Io(x) 
and li(x) is the modified Bessel function of order i. 

The distribution (6) allowed the use of the first and 
of the second moments of C~h. Accordingly, FOMs 
(2)-(4) were replaced by 

NALF(1) = (nq~) -~ E [ ISah-  (ah)l/Oh], (7) 
h 

(8) NALF(2) = q21~, 
h / h  

NALF(3)=(nq3)-~,[(SOth-(ah))/O-h] 2, (9) 

NALF(4)=(nq4) -~ l [ (SOth- (ah) ) / t rh ]  2-11, (10) 
h 

~,where S =  1/MABS [see (3)], n is the number of 
reflections h involved in the summations and 

ql = 0.798, q2 = 1, q3 = 1, q4 = 0.968. 

Equations (7)-(10) can be combined into the FOM 

ALFCOMB = ¼{NALF(1)+ ~ 2 [NALF(i)]I/2),  

(11) 

which is expected to be minimum for the correct 
solution. 

The same point of view was applied by Cascarano, 
Giacovazzo & Viterbo (1987) to the FOMs based on 

a~. The distribution 

P(ot~,)=(2Ot~/vh)exp(--Ot~2/Vh) (12) 

was used to derive the new FOMs 

NPS(0) = qo' ~ a ; / ~  v~/2, (13) 

NPS(1) = (nq~)-I E a~2/vh, (14) 
h 

NPS(2) = (nq2)-l~., [a~2/Vh-- 11, (15) 
h 

NPS(3)=(nq3)-~Y~(oe~/v~,/2-zr~/2/2) 2, (16) 
h 

where, for noncentrosymmetric space groups, 

qo = 0.886, ql = 1, q2 = 0.736, q3 = 0.215, 

and, for centrosymmetric space groups, 

qo = 0.798, ql = 1, q2 = 0.968, q3 -" 0.363. 

Equations (13)-(16) can be combined into the 
FOM 

PSCOMB=~(NPS(0)+i=~, [NPS(i)]I/2} ' (17) 

which is expected to be minimum for the correct 
solution. It was also shown that there is strong correla- 
tion between MABS and PSCOMB, so that the final 
form of PSCOMB was 

1 {NPS(0)+ ~ [NPS(i)] 1/2} PSCOMB - 4(MABS) i= 1 " 

( 1 8 )  

In the program SIR88 (Burla, Camalli, Cascarano, 
Giacovazzo, Polidori, Spagna & Viterbo, 1989), 
PSCOMB, ALFCOMB, MABS and CPHASE may 
be collated to produce the overall combined figure 
of merit 

CFOM = wi 
i = 1  

x {w~DABS + w2 exp [ - (1 - CPHASE) 3/2] 

+ w3 exp [ - (ALFCOMB - 1) 3/2] 

+ w4 exp [ - ( P S C O M B -  1)3/2]}, (19) 

where DABS = 1 - I M A B S -  11. CFOM is expected to 
be equal to 1 for the correct structure. 

Even if (19) constitutes progress with respect to 
previous formulations it has a basic drawback: the 
weights wi are determined by the prior confidence of 
the user in the various FOMs. We will show in § 2 
that the structural complexity, the particular nature 
of the structure under investigation and the efficiency 
of the phasing process frequently generate situations 
in which application of the standard weights wi is 
senseless. In § 3 we will show that PSCOMB and 
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Table 1. Code name, space group and crystallochemical 
data for test structures 

Structure Space 
code group Z 

APAPA (n P4t212 8 
QUINOL (2) R3 54 
TPH (3) B22,2 12 
TUR10 (4) P6322 12 
GRA4 (s) P1 2 
BED (6) 14 8 
CEPHAL (7) C2 8 
FEGAS (s) P63/ mmc 2 
HOVI (9) C 2 / m  4 
INOS O°) P 2 J n  8 
LOGANIN Or) P212t21 4 
NO55 (t2) Fdd2 16 
POCRO (t3) B l l 2 / m  2 
BOBBY O4) P213 4 
MGHEX O3) P3~ 3 
A Z  ET ~ t 6) Pca 21 8 
DIOL (17) I42d 16 
FREIES (ts) P21/ a 4 

References: (1) Suck, Manor & Saenger (1976); (2) Wallwork & Powell 
(1980); (3) Hoekstra, Vos, Braun & Hornst~a (1975); (4) Braekman, Daloze, 
Dupont, Tursch, Declercq, Germain & Van Meerssche (1981); (5) unpub- 
lished; (6) Sheldrick, Davison & Trotter (1978); (7) Arora, Bates, Grady, 
Germain, Declercq & Powell (1976); (8) Cascarano, Dogguy-Smiri & 
Nguyen-Huy Dung (1987); (9) Hovestreydt, Klepp & Parth6 (1983); (10) 
Langs, Freeman, Nockolds & Oh, unpublished; (11) Jones, Sheldrick, 
Gliisenkamp & Tietze (1980); (12) Sheldrick & Trotter (1978); (13) Nguyen- 
Huy Dung, Vo-Van Tien, Behm & Beurskens (1987); (14) Barnett & Uchtman 
(1979); (15) Karle & Karle (1981); (16) Colens, Declercq, Germain, Putzeys 
& Van Meerssche (1974); (17) unpublished; (18) Ito & Novacki (1974). 

Molecular 
formula 

C3oH37NIsOI6P2.6H20 
C6H602 
C24H2oN2 
C15H2402 
C3oH22N204 
C26H26N404 
ClaH21N04 
Fe2Ga2S5 
Prt4Ni16Sin 
C6H1206.H20 
C17H2601o 
C2oH24N4 
CrsKSe8 
Na+Ca2+N(CH2C02) 3- 
C48H68MgNt2012.2ClO4.4CH3CN 
C21HI6CINO 
CtoHl802 
PbAgSbS3 

ALFCOMB can be treated by a common mathemati- 
cal formalism; accordingly, PSCOMB will be con- 
sidered as part of a modified ALFCOMB. In § 4 
the combination of ALFCOMB with CPHASE is 
described. In §§ 5 and 6 modified versions of the 
RKade criterion and the correlation coefficient are 
proposed as efficient figures of merit. 

2. The weighting of the traditional FOMs 

In Table 1 code names, space groups and crystal- 
lochemical data for the test structures are given. 
Among them we select for this section BOBBY, 
FREIES, BED, DIOLE and POCRO. 

BOBBY is a structure with the pseudotranslational 
vector u = ( a + h + e ) / 2 .  SIR88 selected 68 (NLAR) 
strong reflections for active use and 39 (NSMALL) 
weak ones fo r  calculating psi-zero triplets and for 
subsequent use in the negative-quartet routine. If 
prior information about pseudosymmetry is not taken 
into account, the $IR88 phasing process ends with 6 
unphased strong reflections. In this situation only 11 
weak reflections contribute to PSCOMB, which is 
therefore a highly nonselective FOM. 

A limit situation occurs for FREIES if the 
pseudotranslational symmetry (u = a / 2 + b / 3 )  is not 
considered as prior information. Then 76 phases 
(most of  them correspond to substructure reflections) 
over N L A R =  175 are not determined. No psi-zero 

triplets can be used and the 'correct' solution is only 
determined by ALFCOMB. 

For BED, SIR88 chooses N L A R = 2 8 6  and 
NSMALL = 100, for which 4000 psi-zero triplets are 
calculated. PSCOMB and CPHASE are highly selec- 
tive while ALFCOMB is misleading: the highest 
values of ALFCOMB correspond to false structures 
for which the enantiomorph is missing. 

For POCRO (pseudotranslational vector u = a/6 + 
e/2), SIR88 chooses N L A R =  184 and N S M A L L =  
82. 500 highly reliable negative quartets (the average 
concentration parameter of their Von Mises distribu- 
tion is (G4) = 2.9) are used by CPHASE, which selects 
the correct structure. The opposite situation occurs 
for DIOLE, where 182 strong and 35 weak reflections 
are selected by SIR88. Only 84 not very reliable 
negative quartets ((G4) = 0.57) are used by CPHASE, 
which proves to be a nonselective FOM. 

The above examples show that an ideal weighting 
scheme for FOMs is one that automatically makes 
use of the various parameters available at the end of 
the phasing process (i.e. number of phased reflections, 
number of available phase relationships, their relia- 
bility, lack of enantiomorph etc.). 

3. The integration of PSCOMB with ALFCOMB 

ALFCOMB and PSCOMB are based on the distribu- 
tions (6) and (12), which involve the variables ah and 
a~, respectively. The following assumptions (a) and 
(b) are the bases for the mathematical derivation 
of (6) and (12), respectively (Burla, Cascarano, 
Giacovazzo, Nunzi & Polidori, 1987). 

(a) Calculate the distribution of the modulus ah 
of the resultant of r complex vectors Gj exp (iOj) 
under the hypothesis that the 0j are distributed 
according to the Von Mises function 

M ( Oj ; ~Ph , Gj ) 

= [2~rIo(Gj)]  -1 exp  [Gj  cos (Oj - ,ph) ] .  

(b) Calculate the distribution of the modulus a~, 
of the resultant of r complex vectors A~ exp (iOj) 
under the hypothesis that the 0j are distributed 
according to M(Oj; q~h, 0). 

Let us now introduce the variable 

A;'  = 21Ek, Eh-kjl/ N ~/~ (20) 

and apply to it statistical calculations similar to those 
described in (a) and (b). We look for the distribution 
of the modulus a~ of the resultant of r complex 
vectors Aj' exp (iOj) under the hypothesis that the 0j 
(strong triplets) are distributed according to 
M(Oj; q~h, Gj). Then we have (the derivations are 
omitted for brevity) 

P(a~) = N(c~;  (eel), o'~2), (21) 
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where 

(a~,)= ~ A"D" 
j = l  

 g2=k aj,2[l+ 
j = l  

The FOMs (7)-(10) can again be used provided 
that ah, (ah) and Orb are replaced by a~, (a~) and cry, 
respectively. 

The formalism described above can be applied 
without any modification to the so-called psi-E trip- 
lets (Altomare, Cascarano, Giacovazzo & Viterbo, 
1991). In a modified version of SIR88, the NEXP 
reflections immediately following (in decreasing 
order of I EI) the NLAR reflections are selected 
( N E X P =  0.8 NLAR). The psi-E triplets (they relate 
one of the NEXP reflections to two of the NLAR 
reflectiofis) are set up to allow the phasing of NEXP 
reflectiohs and so reduce the truncation errors of the 
Fourier maps. The information (in terms of phases 
and of structure-factor moduli) available for the 
NEXP reflections is the same as that for the NLAR 
reflections. Thus FOMs arising from psi-E triplets 
can be combined with those considered in (7)-(10) 
simply by allowing the reflection h to vary over 
N L A R +  NEXP reflections. 

We now look for the distribution of the modulus 
a ~ of the resultant of r complex vectors Aj' exp (i0j) 
when the 0j are distributed according to M(O~; q~h, O) 
(i.e. randomly distributed, as for psi-zero triplets). 
Since Aj' = 2A~, a~ will be distributed as a~, in (12): 
this distribution may also be approximated by a nor- 
mal distribution with the same first and second 
moments. 

Then (21) still holds provided: 
( a )  o-~2 =- arch, 
(b) (a~) is calculated as (a~) = 0.886cr~ t/z for non- 

centrosymmetric space groups and (a~)= 0.798o-~ ~/2 
for centrosymmetric space groups. 

Then the FOMs (7)-(10) [and consequently (11)] 
expressed in terms of a" and o-~ can be used for 
strong psi-E and psi-zero triplets simply by allowing 
the reflection h to vary over N L A R + N E X P +  
NSMALL. In accordance with (18), the contribution 
arising from the NSMALL reflections is divided by 
MABS before being added to the contribution from 
the NLAR and NEXP reflections. 

It should also be noted that a maximization of the 
new NALF(3), say 

N A L F ( 3 )  = ( n q 3 ) - I )  -'. [ ( S o f ~  - (0~ ~ ) ) / O ' h ]  2 , 
h 

corresponds to maximizing the joint probability 
distribution 

P ( a ~ , , ,  " . O~h 2, "" ) = H P(a~)- 
h 

Table 2. CFOM values 

For  each test s t ructure  the values  o f  C F O M  are given for  the correct  
solut ion found  by  the modif ied  vers ion of  SIR88 ( C F O M C ) ,  for  
the incorrect  so lut ion with the highest  value o f  C F O M  ( C F O M  ~) 
and  for  the pub l i shed  phases  ( C F O M P ) .  

C F O M  c C F O M  1 C F O M  P 

APAPA 0.993 0.943 0.996 
QUINOL 0.981 0.202 0.982 
TPH 0.987 0.382 0.987 
TUR10 0.972 0.511 0.965 
GRA4 0.757 0.677 0.758 
BED 0.532 0.315 0.545 
CEPHAL 1.000 0.563 1.000 
FEGAS 0.899 0.613 0.899 
HOVI 0.732 0.729 0.727 
INOS 1.000 0.902 1.000 
LOGAN I N 0.993 0.758 0.999 
NO55 0.695 0.576 0.736 
POCRO 0.847 0.254 0.846 
BOBBY 0.360 0.184 0.634 
MGHEX 0.832 0.700 0.861 
AZET 0.895 0.749 1.000 
DIOL 0.838 0.651 0.797 
FREIES 0.! 55 0.000 0.976 

4. A combined FOM 

CPHASE and the new ALFCOMB may be collated 
in the combined FOM 

CFOM = (1 + w)-~{exp [ - ( A L F C O M B -  1) 3/2] 

+ w exp [ - ( C P H A S E -  1)3/z]}, (22) 

where w = [DI((G))] ~/2. (G) is the average value of 
G calculated for all the phase relationships (usually 
estimated negative-triplet and negative-quartet invar- 
iants). The confidence in CPHASE now depends on 
the average phase reliability: this is expected to be 
small for large structures. 

A modified version of SIR88 has been used to 
apply (22) to the test structures quoted in Table 1. 
We chose NSMALL = NLAR/3 with the supplemen- 
tary condition that the maximum value o f [E  I is less 
than 0.4, and N E X P = N L A R / 2 .  Such a choice 
proved to be reasonable: NEXP is sufficiently large 
to make ALFCOMB more robust but not so large as 
to involve in ALFCOMB too many unreliable phases. 
NSMALL is also sufficiently large to contribute sig- 
nificantly to ALFCOMB, but not so large to involve 
reflections with I EI remarkably different from zero. 
In Table 2 we give for each test structure: (a) the 
value of CFOM for the correct structure (CFOMC); 
(b) the highest value of CFOM corresponding to an 
incorrect solution (CFOM ~); (c) the value of CFOM 
calculated from the published phases (CFOMP). We 
note the following. 

(i) The correct solution is always identified by 
CFOM. 

(ii) The value of CFOM, expected to be equal to 
unity for the correct structure, is in most cases close 
to unity. Remarkable deviations occur when pseudo- 
translational symmetry is present. 
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(iii) The discrimination between correct and incor- 
rect solutions is satisfactory in most cases. 

5. The use of  the RKarl e figure of  merit 

According to Karle & Karle (1966) 

I Eh]~al¢ COS q~h = 2nh ~ N-~/2 ~. IEkjEh-kj[ 
J 

x cos (~% + ~Oh-kj), 

IEhlca,¢ sin ~h = 2n~'  N - ' / 2 ~  IE~,E.-k,I 
J 

(23a) 

xs in  (~0kj + ~0h-kj), (23b) 

where nh is the number of terms in the summations. 
The necessary correlation between IEhlca~c and the 
observed value I E.I suggested to Karle & Karle the 
following criterion: 

R Karle = E II E.I- gl E.Ica,cl/E led-- minimum 
h / h  

(24) 

for the correct structure. K is a scale factor defined 
by K ~h IEhlca~c = Y~h IEhl. 

In most direct-methods packages the RKar l  e 

criterion has been calculated from the NLAR reflec- 
tions only; it was useful on several occasions but 
inconclusive for others. We show here that the Rna~  
criterion may become more powerful when extended 
to N L A R +  N E X P +  NSMALL reflections, provided 
care is taken of the specific nature of the different 
types of reflections. 

On combining (23a) with (23b) we obtain 

F-.h ca~ can be put on the same scale as [Eh by using 

E ( c ~ )  = K E IE.I, 
h h 

K = z I .l. (25) 

from which 

We use two different scale factors: one for the 
N L A R +  NEXP reflections and one for the NSMALL 
reflections. The (a~) used in the two different cases 
were given in § 3. Rescaled ]Eca~d values can then be 
used in the FOM 

RKa.~ = Z' I IEhI - IE.Ic.,cI / ~ '  (26) 

where the summation ~ '  is made over the N L A R +  
N E X P +  NSMALL reflections. The robustness of (26) 
may be deduced from the results in Table 3. For each 
test structure we give, as calculated by (26), the values 
of c I P RKarme, RK.r~ and RKa~, where C, I and P denote 
the correct solution, the incorrect solution with the 

Table 3. RKart e values 

For each test structure the values of RKane calculated by (26) are 
given for the correct solution c (RK.rle), for the incorrect solution 
with the smallest value of RKade ( R ~ d e )  and for the published 
phases (R~rl~)- The values of Rl<.rl, calculated according to (24) 
are given in paren theses .  

c i P 
R Karle R Karle R Karle 

APAPA 0.364 0.404 0.367 
(0.356) (0.386) (0.351) 

QUINOL 0.227 0.395 0.227 
(0.232) (0.230) (0.232) 

TPH 0.194 0.338 0.194 
(0.176) (0.306) (0.176) 

TUR10 0.369 0.477 0.368 
(0.253) (0.348) (0.247) 

GRA4 0.247 0.250 0.245 
(0.225) (0.225) (0.225) 

BED 0.318 0.356 0.334 
(0.303) (0.197) (0.334) 

CEPHAL 0.185 0.247 0.173 
(0.165) (0.142) (0.161) 

FEGAS 0.247 0.285 0.247 
(0.184) (0.215) (0.184) 

HOV1 0.244 0.244 0.244 
(0.226) (0.225) (0.226) 

[NOS 0.214 0.274 0.214 
(0.228) (0.280) (0.230) 

LOGANIN 0.199 0.267 0.183 
(0.188) (0.257) (0.177) 

NO55 0.316 0.335 0.298 
(0.286) (0.298) (0.282) 

POCRO 0.338 0.370 0.342 
(0.242) (0.242) (0.242) 

BOBBY 0.220 0.377 0.232 
(0.194) (0.385) (0.187) 

MGHEX 0.297 0.315 0.331 
(0.269) (0.295) (0.296) 

AZET 0.375 0.419 0.341 
(0.378) (0.413) (0.378) 

DIOL 0.305 0.427 0.293 
(0.290) (0.414) (0.287) 

FREIES 0.177 0.876 0.226 
(0.174) (0.877) (0.191) 

smallest value of RKarl e and the published phases, 
respectively. The corresponding values obtained by 
(24) are given in parentheses in Table 3. We note that 
(a) use of (26) always indicates the correct solution; 
(b) in four cases (QUINOL, BED, CEPHAL, HOV1), 
use of (24) gives the smallest value of R K a r l  e for an 
incorrect solution; (c) the discriminating power of 
(26) is in general better than that of (24). In one case 
(HOV1), identical values of RKar~e are found with 
(26) for the correct and an incorrect solution, while 
use of (24) leads to identical values in two cases 
(GRA4, POCRO). 

6. The use of  the correlation coefficient 

The use of the correlation coefficient 

p = y [(IEhl~a,c-(le,,l¢a,¢))(lE,,I-(lEd))] 
h 

x (I Ehlca,c-- (I Ehloalc))2 E (IEhl--(IEhl))" 
h (27) 

as a FOM for direct methods has never been popular. 
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Table 4. p values for A P A P A  corresponding to a selec- 
tion o f  112 trials as calculated for N L A R  reflections 

Trial 100 gives the correct solution. 

Trial p 

1 -0.066 
10 -o.129 
20 -0.091 
30 -o.o41 
40 -0.124 
50 -0.080 
60 0.000 
70 -0.136 
80 -0.101 
90 -0.156 

lOO -0.096 
11o -0.104 
112 -0.126 

Table 5. p values 

For each test structure the values of p as calculated for the correct 
structure (pC), for the incorrect solution with highest values of p 
(p I) and for the published phases (pV) are given. NLAR+ NEXP+ 
NSMALL reflections are used. The corresponding values calcu- 
lated from NLAR reflections only are given in parentheses. 

pC pt pe 

APAPA 0.599 0.548 0.611 
(-0.087) (0.110) (-0.085) 

QUINOL 0.828 0.596 0.828 
(0.110) (0.166) (0.110) 

TPH 0.824 0.528 0.826 
(0.361) (0.373) (0.337) 

TUR10 0.559 0.408 0.549 
(0.337) (0.341) (0.334) 

GRA4 0.813 0.809 0.816 
(0.494) (0.494) (0.494) 

BED 0.631 0.520 0.590 
(0.224) (0.201) (0.235) 

CEPHAL 0.801 0.477 0.831 
(0.313) (0.173) (0.301) 

FEGAS 0.820 0.710 0.820 
(0.381) (0.386) (0.381) 

HOV1 0.754 0.754 0.757 
(0.482) (0.482) (0.482) 

INOS 0.820 0.729 0.817 
(0.012) (0.071 ) (0.026) 

LOGAN 0.808 0.664 0.837 
(0.267) (0.303) (0.280) 

NO55 0.641 0.543 0.690 
(0.269) (0.209) (0.266) 

POCRO 0.705 0.670 0.728 
(0.204) (0.228) (0.204) 

BOBBY 0.673 0.436 0.811 
(0.327) (0.254) (0.447) 

MGHEX 0.579 0.553 0.566 
(-0.016) (0.202) (-0.005) 

AZET 0.500 0.424 0.576 
(-0.183) (-0.107) (-0.169) 

DIOL 0.712 0.501 0.720 
(-0.008) (0.043) (-0.085) 

FREIES 0.787 -0.414 0.860 
(0.764) (-0.393) (0.667) 

The reason is ev ident  in Table  4, where  the va lue  o f  
p is quoted  for a subset  o f  the 112 trials ca lculated 
by $IR88 for A P A P A  w h e n  h in (27) varies over 
N L A R  reflections.  In most  cases  p is negat ive ,  even  
for the correct so lut ion  (trial 100). The correct solu-  
t ion cannot be found by seeking the maximum values 
of p. 

The correlation coefficient may become a robust 
FOM if the summations in (27) are extended to 
N L A R + N E X P + N S M A L L  reflections. In Table 5, 
pC, pl  and pe are the values of p corresponding to 
the correct solution, to the incorrect solution with the 
highest value of p and to the published phase respec- 
tively. The corresponding values of p calculated via 
the NLAR reflections only are given in parentheses. 
We note that p is an unreliable FOM when calculated 
from the NLAR reflections only but is reliable when 
calculated from N L A R + N E X P +  NSMALL reflec- 
tions (the correct solution is always picked up). 

7. Concluding remarks 

Figures of merit based on the distribution of the a 
parameter and those involving psi-zero triplets have 
been reconsidered. It has been shown that the same 
mathematical formalism can be used with both these 
families of FOMs and leads to more efficient and 
robust figures of merit. An early FOM, the RKarte 
criterion, has been revisited: again the combined use 
of reflections with large and small moduli of E is 
suggested and recipes for their efficient use are given. 
The correlation coefficient has also been taken into 
consideration as a possible FOM. Provided large and 
small intensity reflections are used simultaneously 
this FOM proved to be a powerful tool for finding 
the correct solution among numerous trials. 

The authors thank Miss C. Chiarella for technical 
support. 
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Abstract 

An algorithm for calculating the scattering factors of 
atomic fragments in molecules as defined by the 
Stockholder recipe is presented. This method allows 
the calculation, from ab initio molecular wave func- 
tions, of structure factors including individual aniso- 
tropic atomic temperature factors. These structure 
factors agree with the model used in most least- 
squares multipole-refinement procedures. Calcula- 
tions on the H20 molecule illustrate the method. 

1. Introduction 

X-ray scattering experiments can provide us with a 
large amount  of  information on the structures of  
molecular crystals. Accurate high-resolution experi- 
ments can even reveal details of the electron-density 
distribution, such as bonding densities and subtle 
effects of intermolecular interactions and polarization 
by the crystal field (Krijn, Graafsma & Feil, 1988; 
Krijn & Feil, 1988). This fact makes it relevant to 
calculate in advance the results of an X-ray scattering 
experiment by quantum-chemical ab initio methods. 
Firstly, it gives us the possibility to verify experi- 
mentally the approximations used in ab initio calcula- 
tions of the electron-density distribution in a crystal. 
Is it necessary to use the Bloch-function approach in 
crystal calculations or do cluster calculations suffice? 
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When a cluster approach is deemed suitable one can 
test the basis-set truncation error and the approxima- 
tions that have to be used to incorporate the embed- 
ding of the cluster in the crystal, i.e. the polarization 
by the electrostatic crystal field and the effect of  the 
exchange repulsion by the surrounding molecules. 
This is particularly important  when hydrogen bonds 
and electrostatic fields are included in the calculation 
on molecular crystals. Secondly, the theoretically 
calculated X-ray intensities can be used to check the 
crystallographic refinement procedures that are 
applied to remove noise from the data and to obtain 
information on the electron-density distribution in 
analytic form. In particular, one can verify whether 
the structural data on which the theoretical calcula- 
tions are based are reproduced by the refinement. 

Most experimental X-ray diffraction data on crys- 
tals are interpreted with a model based on the assump- 
tion that the crystal is built up of atoms. The lattice 
vibrations of  the crystal, which consist of  zero-point 
vibrations and thermal excitations, are taken into 
account by the Debye-Waller  factor. Widely used 
expressions of the Debye-Wal ler  factor are based on 
the assumption that the atoms behave as coupled 
harmonic oscillators. This harmonic-vibration model 
implies that the density distribution for each nucleus 
is given by a three-dimensional Gaussian distribution. 
The adiabatic approximation leads to the model of 
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